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Abstract. New states of electromagnetic field, i.e. even and odd negative binomial states are
introduced here. These states interpolate between the even (odd) coherent states and the even
(odd) quasi-thermal states. Various statistical properties of these states such as the mean photon
number, second-order coherence function, normal squeezing are calculated. The Wigner function
for these states are also discussed. These results may be useful for carrying out systematic study
of the non-classical properties of ‘Schrödinger cat states’ as one moves from even (odd) coherent
state to even (odd) quasi-thermal state.

1. Introduction

In the past few decades many electromagnetic field states, which are in general a
superposition of Fock states, have been introduced in quantum optics. Most of these states
are characterized by some discrete photon number distribution and thus play a significant role
in describing the statistical properties of the radiation field. For example, fields described
by the coherent state and the thermal state are known to lead to Poisson and Bose–Einstein
distributions respectively for the number of photons [1]. Binomial, as well as negative
binomial, states of the field are introduced and their statistical properties and interaction
with the matter are also reported [2–5]. The interesting property of a binomial (negative
binomial) state is that under two different limiting conditions it reduces to either a Fock state
(quasi-thermal state) or a coherent state [2–5]. The special case of a negative binomial state
with the removal of then = 0 term, known as the logarithmic state, has been investigated
and it is found to exhibit some non-classical characteristics and its interaction with matter
is considered [6]. Also, the generalized geometric state [7] has been studied and this state
interpolates between a Fock state and a thermal (non-pure) state. Recently, the superposition
of two coherent states is investigated with the aim of understanding the role of quantum
interference between coherent states and consequently to generate the states whose properties
are different from an ordinary coherent state [8–12]. The possibility of generating such a
superposition of the coherent states in experiments has been proposed by many authors.
In fact, Yurke and Stoler [13] have shown that a coherent state propagating through an
amplitude dispersive medium, under certain specified conditions of parameters can evolve
into a superposition of two coherent states 180◦ out of phase. Another proposal has been
made for generating the superposition|α〉 ± | − α〉 (i.e. even and odd coherent states) in
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cavity QED by Bruneet al [14] and Gea-Banocholche [15]. Generation of even and odd
coherent states based on competition between parametric amplification and the incoherent
losses from two-photon resonant absorption has also been proposed [12]. Very recently,
one of us has proposed a new kind of superposition of binomial states which has been
named as the even binomial state [16]. Some of the properties of this state along with some
possibilities of its generation in quantum optical processes have also been discussed [16].
In this work we would discuss yet another class of the state(s) to be called by the even
(odd) negative binomial state, which in fact, interpolates between the even (odd) coherent
state and the even (odd) quasi-thermal state. The ordinary negative binomial state is always
super-Poissonian no matter what parameters one chooses. However, if one considers a
‘Schrödinger cat’-like superposition of two negative binomial states then, as we will see
later, the super-Poissonian character is flipped over to a sub-Poissonian character for a certain
range of parameters. Since the negative binomial state is ‘intermediate’ between a coherent
state and a thermal-like (pure) state, by varying its parameters one can move systematically
from a coherent-state character to a thermal-like state character. The ‘Schrödinger cat’-like
superposition of two coherent states has been well studied in the literature so it would be
very interesting to study the superposition of such states which on the one hand represent the
even (odd) coherent state and on the other extreme represent the even (odd) thermal state.
Thus how the effect of quantum interference (due to ‘Schrödinger cat’-like superposition
of states) gets modified as one moves from the coherent state character to a thermal-like
state character could be reasoned as the motivation behind this study. Systems exhibiting
quantum coherence between parts differing by some macroscopic physical parameters has
been given the generic name of ‘Schrödinger cats’. The study of ‘decoherence’ in such
a system is extremely interesting since it provides a testing ground for the ideas which
are at the heart of the measurement theory in quantum mechanics. The rest of the paper
is organized as follows. In section 2 we introduce the even and odd negative binomial
state and calculate the mean photon number and second-order coherence function for them.
Section 3 is devoted to the study of normal squeezing of these states. The Wigner function
related to these states is calculated in section 4. Finally, some possibilities of generating
these states and concluding remarks are given in section 5.

2. The even and the odd negative binomial states

The negative binomial state is defined in the literature [4, 5]:

|w, q〉 =
∞∑
n=0

[
(n+ w)!

n!w!
q2n(1 − |q|2)w+1

]1/2

|n〉 (1)

wherew > 0 (i.e.,w is any real positive number in general [4]); 06 |q|2 < 1. The mean
and the variance of photon number distribution corresponding to the state (1) is given by

〈n〉 = (w + 1)
|q|2

1 − |q|2 〈n2〉 − 〈n〉2 = (w + 1)
|q|2

(1 − |q|2)2 . (2)

The state (1) reduces to a coherent state in the limiting conditionw → ∞, |q|2 → 0 such
that (w+ 1)|q|2/(1 − |q|2) ≡ 〈n〉 is kept constant. However, in another limiting condition,
i.e.w = 0, the state (1) represents a quasi-thermal state which is a pure state having photon
number distribution identical to the usual thermal (chaotic) state (mixed state) with the same
mean and variance [4].

We define a general superposition of two negative binomial states as follows

|9g〉 = Ng[|w, q〉 + µeiψ |w, qeiφ〉] (3)
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whereµ is a real number andNg is the normalization constant obtained by taking the norm
of (3) and is given by

[N2
g ]−1 = 2 Re[(1 − |q|2)w+1{(1 − |q|2)−(w+1) + µe−iψ(1 − |q|2eiφ)−(w+1)}]. (4)

For µ = 0, |9g〉 → |q,w〉 and forµ = ∞, |9g〉 → |qeiφ, w〉. The state (3) represents an
even negative binomial state|9e〉 whenµ = 1, ψ = 0, φ = π ; an odd negative binomial
state|9o〉 whenµ = 1, ψ = π , φ = π ; and an oblique negative binomial state|9p〉 when
µ = 1, ψ = 0, φ = π/2. The normalization constants represented byNe, No, andNp for
the even, odd and oblique negative binomial states respectively are given by the following
expressions:

[N2
e ]−1 = 2(1 − |q|2)w+1{(1 − |q|2)−(w+1) + (1 + |q|2)−(w+1)}

[N2
o ]−1 = 2(1 − |q|2)w+1{(1 − |q|2)−(w+1) − (1 + |q|2)−(w+1)}

[N2
p ]−1 = 2 Re[(1 − |q|2)w+1{(1 − |q|2)−(w+1) + (1 − i|q|2)−(w+1)}].

(5)

It is quite straightforward to show that the states|9e〉, |9o〉, and|9p〉 reduce to even, odd
and oblique coherent states respectively in the limiting condition of parameters:w → ∞,
|q|2 → 0, such that(w + 1)|q|2/(1 − |q|2) ≡ 〈n〉 is unchanged. In the other limiting
condition, i.e.w → 0, |q|2 > 0 the states|9e〉, |9o〉 and|9p〉 reduce to the so-called even,
odd and oblique thermal (pure) states. We shall now make use of the states|9e〉, |9o〉
and |9p〉 to calculate the mean photon number of these states. The mean photon number
is defined as the expectation value of the number operatorn̂ = a+a. It is easy to show
that the expression of the mean photon number〈n〉e, 〈n〉o and 〈n〉p for the even, odd and
oblique negative binomial states are

〈n〉e = (w + 1)|q|2[(1 − |q|2)−(w+2) − (1 + |q|2)−(w+2)]

[(1 − |q|2)−(w+1) + (1 + |q|2)−(w+1)]

〈n〉o = (w + 1)|q|2[(1 − |q|2)−(w+2) + (1 + |q|2)−(w+2)]

[(1 − |q|2)−(w+1) − (1 + |q|2)−(w+1)]

〈n〉p = (w + 1)|q|2 Re[(1 − |q|2)−(w+2) + i(1 − i|q|2)−(w+2)]

Re[(1 − |q|2)−(w+1) + (1 − i|q|2)−(w+1)]
.

(6)

Again, we obtain〈n〉e = 〈n〉 tanh(〈n〉), 〈n〉o = 〈n〉 coth(〈n〉) in the coherent state limit,
which as a matter of fact are precisely the expressions of mean photon numbers for the
even and the odd coherent states respectively [12].

The second-order zero-time coherence function defined as

g(2)(0) = 〈a+2a2〉
〈a+a〉2

(7)

is an important quantity which can provide a measure of statistical nature of any
electromagnetic field state.g(2)(0) < 1 implies the sub-Poissonian statistics. In the
following we give the expressions ofg(2)e (0), g

(2)
o (0), and g(2)p (0), i.e. the second-order

coherence functions for the even, odd and oblique negative binomial states respectively:

g(2)e (0) = (w + 2)

(w + 1)

[
1 + (1 − |q|4)−(w+1){(1 + |q|2)−1 + (1 − |q|2)−1}2

[(1 − |q|2)−(w+2) − (1 + |q|2)−(w+2)]2

]
(8a)

g(2)o (0) = (w + 2)

(w + 1)

[
1 − (1 − |q|4)−(w+1){(1 + |q|2)−1 − (1 − |q|2)−1}2

[(1 − |q|2)−(w+2) + (1 + |q|2)−(w+2)]2

]
(8b)

g(2)p (0) = Re{(w + 1)(w + 2)|q|4[(1 − |q|2)−(w+3) − (1 − i|q|2)−(w+3)]}
2(1 − |q|2)w+1N2

p〈n〉2
p

. (8c)
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In the coherent state limit of the parametersw and |q|2, we can recover the expression of
second-order coherence function of even, odd and oblique coherent states from (8). In fact,
in this limit we obtain from (8),g(2)e (0) = coth2(〈n〉) and g(2)o (0) = tanh2(〈n〉) which are
exactly (63) and (64) of [12].

Figure 1. The second-order coherence functiong(2)(0) as a function of parameterq2 = |q|2
with q = |q| and (a) 〈n〉 = 1, (b) 〈n〉 = 10. The full curve shows the even state, and the broken
curve shows the odd state with〈n〉 ≡ (w + 1)q2/(1 − q2).
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We plot the second-order coherence function (8) as a function of parameterq2 =
|q|2(0 6 q2< 1) for even and odd negative binomial states in figures 1(a) and 1(b) for two
different values of〈n〉. For the lower value of〈n〉, the odd state exhibits sub-Poissonian
behaviour (figures 1(a)) for most of the values ofq2, but, the even state always shows
super-Poissonian behaviour for the complete range ofq2 irrespective of the value of〈n〉 as
could be noted from formula (8a). With increases in〈n〉 the difference between the values
of g(2)e (0) andg(2)o (0) reduces considerably, especially at low values ofq2 and their value
remains around 1, which in fact is very clear from figure 1(b). Physically, it means that the
non-classical nature of at least one of these states is apparent when the photon occupation
number is very small. Nevertheless, the second order coherence function for these states
start behaving like ordinary coherent states for the high photon occupation number〈n〉 (up
to a certain range of the parameterq2). We have also verified the nature ofg(2)p (0) as a
function ofq2 and it does not show any sub-Poissonian behaviour irrespective of any mean
photon number(〈n〉) values.

Before proceeding further we would like to give operator representation of the even and
odd negative binomial states in terms of the so-called even and odd thermal states, e.g.

ρnbeven = 4N2
e

we!

(1 − |q|2)(we+1)

(1 − |q|4) (|q|2)−we(a)we (ρtheven)(a
+)we (9)

whenw ≡ we is even;

ρnbeven = 4N2
e

wo!

(1 − |q|2)(wo+1)

(1 − |q|4) (|q|2)−(w0−1)(a)wo(ρthodd)(a
+)wo (10)

whenw ≡ wo is odd;

ρnbodd = 4N2
o

we!

(1 − |q|2)(we+1)

(1 − |q|4) (|q|2)−(we−1)(a)we (ρthodd)(a
+)we (11)

whenw ≡ we is even;

ρnbodd = 4N2
o

wo!

(1 − |q|2)(wo+1)

(1 − |q|4) (|q|2)−wo(a)wo(ρtheven)(a
+)wo (12)

whenw ≡ wo is odd; whereρnbeven(ρ
nb
odd) andρtheven(ρ

th
odd) are the density operators for the even

(odd) negative binomial states and even (odd) thermal states respectively. For example, the
expression ofρtheven reads as

ρtheven =
∞∑
n=0

[1 − (q2)2](q2)2n|2n〉〈2n|. (13)

In (9)–(12), we have taken only the diagonal terms in the density matrix into account to
make their connection to the thermal density of the non-pure state.

3. Squeezing

In this section we study the squeezing properties of the even and odd negative binomial
states. It is well known that the quadrature operators of the single mode field are given by

X1 = 1
2(a + a+) X2 = 1

2i
(a − a+) (14)

such that [X1, X2] = i
2 which implies the uncertainty relation

(1X1)
2(1X2)

2 > 1
16 (15)
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where the variance(1Xi)2 = 〈X2
i 〉− 〈Xi〉2. The field is said to be squeezed if(1Xi)2 < 1

4
(i = 1, 2). In terms of the normally ordered variances :(1Xi)

2: = 〈:X2
i :〉 − 〈Xi〉2 and

the squeezing exits when :(1Xi)2: < 0. Note that for both even and odd states under
consideration in this work we always find〈Xi〉 = 0 so that

S1 = :(1X1)
2: = (1X1)

2 − 1
4 = 1

4〈2a+a + a+2 + a2〉 (16)

S2 = :(1X2)
2: = (1X2)

2 − 1
4 = 1

4〈2a+a − a+2 − a2〉. (17)

However, for the oblique state we find〈Xi〉 6= 0, so the expressions (16) and (17) will be
modified for that state. In order to calculate normal squeezing(S1) as discussed above we
need to know the expectation values of the even powers of the operatorsa+(a) for both
even and odd negative binomial states. These expectation values are of the form

〈9e|a+2s |9e〉 = (1 − |q|2)(w+1)

N2
e

∑
n

[(n+ 2s + w)]!(n+ w)!] 1/2

n!w!
|q|2nq∗2s [1 + (−1)n]

(18)

for the even state,

〈9o|a+2s |9o〉 = (1 − |q|2)(w+1)

N2
o

∑
n

[(n+ 2s + w]!(n+ w)!] 1/2

n!w!
|q|2nq∗2s [1 − (−1)n]

(19)

for the odd state.
Similarly, the expectation values of〈a2s〉 can be calculated. We make use of these

expressions together with the equations (16) and (17) to calculate the in phase squeezing
S1 for both even and odd negative binomial states. We defineq = |q|eiα and observe no
squeezing forα = 0. Next, we setα = π/2 and plotS1 as a function of parameterq2 = |q|2
in figures 2(a) and 2(b) for 〈n〉 = 2 and 4 respectively. From these figures it is quite clear
that both even and odd negative binomial states do exhibit squeezing, however, the depth
of squeezing and the range ofq2 over which squeezing is observed are very sensitive to
the value of〈n〉 and they decrease with the increase of〈n〉 for the even state, for example.
Incidentally, similar behaviour has also been observed in even and odd coherent states.
Also, as〈n〉 increases, the disparity of the squeezing values of even and odd states (as a
function of q2) up toq2 = 0.6 or so diminishes (figure 2(b)).

4. Wigner function

In this section we study the Wigner function for even, odd and oblique negative binomial
states. With the study of the Wigner function one can characterize the non-classical nature
of the field states.

The Wigner functionW(α) is defined [17] in terms of the characteristic functionCp(β)
by

W(α) = 1

π2

∫ ∞

−∞
d2β Cp(β) exp(αβ∗ − βα∗) exp(− 1

2|β|2). (20)

The characteristic function is defined as the expectation value of the Glauber translation
operator

Cp(β) ≡ Tr[ρ̂ exp(βa+) exp(−β∗a)] (21)

whereρ̂ is the density matrix operator:ρe = |9e〉〈9e|, ρo = |9o〉〈9o|, andρp = |9p〉〈9p|
for even, odd and oblique states respectively.
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Figure 2. The normal squeezing (in-phase squeezing)S1 ≡ [(1X1)
2 − 1

4 ] as a function of
q2 = |q|2 with q = |q|eiπ/2 and (a) 〈n〉 = 2, (b) 〈n〉 = 4. The full curve shows the even state,
and the broken curve shows the odd state with〈n〉 ≡ (w + 1)q2/(1 − q2).

Substituting (21) in (20) and performing the integration give the following expressions
for the Wigner function

W(α)|even = 8

π
N2
e (1 − |q|2)(w+1)

∑
n

(2n+ w)!

(2n)!w!
(|q|2)2ne−2|α|2L2n(4|α|2) (22a)
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W(α)|odd = 8

π
N2
o (1 − |q|2)(w+1)

∑
n

(2n+ w + 1)!

(2n+ 1)!w!
(−|q|2)2n+1e−2|α|2L2n+1(4|α|2) (22b)

W(α)|oblique = 4

π
N2
p(1 − |q|2)(w+1)

∑
n

(n+ w)!

n!w!
(−|q|2)ne−2|α|2[1 + cos(nπ/2)]Ln(4|α|2).

(22c)

In obtaining the expressions of the Wigner function (as above) we have assumed phase
averaging such that only the diagonal terms of the density operator take part in determining
these expressions. In other words we are examining a special case (known as mixed states
in the literature because of phase averaging) of the pure states defined above. Note that
by invoking phase averaging we are able to establish relationships between the density
operators of even (odd) negative binomial states and even (odd) thermal states (see (9)–
(12) above). What is its equivalent for the Wigner function has precisely motivated us to
carry out the study of the phased averaged Wigner function. As we will see such phased
averaged Wigner function is a special case of the more generalized Wigner function (see
(24) below) and interpolates between the Wigner function of the even (odd) thermal state
and the phased averaged even (odd) coherent state. We will also see that the phase averaged
Wigner function can be put in a closed form.

The Wigner functions for even, odd and oblique negative binomial states are plotted
for different values of parametersw and q2(= |q|2) (keeping〈n〉 = (w + 1)q2/(1 − q2)
unchanged) in figures 3, 4 and 5 respectively. The Wigner function of the even (odd,
oblique) negative binomial state reduces to the Wigner function of an even (odd, oblique)
coherent state or an even (odd, oblique) thermal state under the two different limiting
conditions of parameters as depicted in these figures. The Wigner function of the even
negative binomial state starts with a central peak with a crater-like structure around it
(figure 3(a)) near the coherent limit. The depth of the crater reduces considerably as one
moves towards the thermal limit (figures 3(b) and (c)). The situation for the odd negative
binomial state looks inverted in comparison to the even negative binomial state (note the
minus sign appearing outside the formula (22b)), because the Wigner function of this state
starts with an inverted peak surrounded by an inverted crater (figure 4(a)) near its coherent
limit and the crater height reduces as one moves towards the thermal limit (figure 4(b)
and (c)). The evolution of the Wigner function for the oblique negative binomial state is
very interesting. It starts with a doubly folded inverted peak near the coherent state limit
(figure 5(a)); as the parameters are changed towards the thermal limit, one of them starts
to unfold towards the positive side (figure 5(b)) and this unfolds completely in the thermal
limit (figure 5(c)) and consequently the one-fold inverted peak structure remains. Since we
have used phase averaging of the density operator in deriving the expressions of the Wigner
function so that they can conveniently be put in a closed form:

W(α)|even = 4

π
N2
e (1 − |q|2)(w+1)e−2|α|2

[
(1 + |q|2)−(w+1)

1F1

(
w + 1, 1,

4|α|2|q|2
|q|2 + 1

)
+(1 − |q|2)−(w+1)

1F1

(
w + 1, 1,

4|α|2|q|2
|q|2 − 1

) ]
(23a)

W(α)|odd = 4

π
N2
o (1 − |q|2)(w+1)e−2|α|2

[
(1 + |q|2)−(w+1)

1F1

(
w + 1, 1,

4|α|2|q|2
|q|2 + 1

)
−(1 − |q|2)−(w+1)

1F1

(
w + 1, 1,

4|α|2|q|2
|q|2 − 1

) ]
(23b)
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Figure 3. Wigner functionW(X, Y ) for the even negative binomial state with〈n〉 = 4,
X = Re(α) and Y = Im(α). (a) w = 75, q2 = 0.05 (coherent state limit), (b) w = 5,
q2 = 0.4 and (c) w = 0, q2 = 0.8 (thermal state limit).

W(α)|oblique = 4

π
N2
e (1 − |q|2)(w+1)e−2|α|2

[
(1 + |q|2)−(w+1)

1F1

(
w + 1, 1,

4|α|2|q|2
|q|2 + 1

)
+ Re(1 + i|q|2)−(w+1)

1F1

(
w + 1, 1,

4i|α|2|q|2
i|q|2 + 1

) ]
(23c)
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Figure 4. Wigner functionW(X, Y ) for the odd negative binomial state with all other parameters
as in figure 3.
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Figure 5. Wigner functionW(X, Y ) for the oblique negative binomial state with all other
parameters as in figure 3.

where1F1(a, b; z) is the confluent hypergeometric function:

1F1(a, b; z) =
∞∑
r=0

(a)r

(b)r

zr

r!
.

When we take the complete density matrix for even, odd and oblique negative binomial
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Figure 6. The complete Wigner functionW(X, Y ) (as defined by (24)) for the even negative
binomial state with〈n〉 = 4, X = Re(α) andY = Im(α). (a) w = 75, q2 = 0.05 (coherent
state limit), (b) w = 5, q2 = 0.4 and (c) w = 0, q2 = 0.8 (thermal state limit).

states in calculating the Wigner function, we have to take into account the non-diagonal
terms also. In that case the expression of the Wigner function take the following form (after
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Figure 7. The complete Wigner functionW(X, Y ) (as defined by (24)) for the odd negative
binomial state with all other parameters as in figure 6.

some simplifications):

W(α)|q = 1

π

[ ∑
n

2(−1)ne−2|α|2Ln(4|α|2)ρq(n, n)

+
∑
m=1

∑
n

√{n!/(m+ n)!}2(−1)ne−2|α|2Lmn (4|α|2)

×{[2α∗]mρq(m+ n, n)+ [2α]mρq(n, n+m)}
]

(24)
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where the subscriptq stands fore, o andp for even, odd and oblique negative binomial states
respectively.ρq(n, n) is the diagonal element of the density operator whileρq(m+n, n) or
ρq(n,m+n) represents the off-diagonal element of the density operator. The definition of the
density operatorρe, ρo, ρp for even, odd and oblique negative binomial states respectively
has been mentioned just after (21). Thus by inserting the appropriate density operator of
the state (ρe, ρo or ρp) in (24) one can obtain the corresponding Wigner function (We, Wo

or Wp) of that state. In (24)Lαn(x) is the associated Laguerre polynomial:

Lαn(x) =
n∑
j=1

(
n+ α

n− j

)
(−x)j
j !

. (25)

Figures 6(a) and 7(a) show the Wigner function (as defined by (24)) representing the even
and the odd coherent state (n̄ = 4, w = 75, q2 = 0.05) in phase space. This distribution
is a real function which can take negative values in limited regions of phase space. The
two Gaussian peaks are associated to the|α〉 and | − α〉 (α = 2) coherent fields and the
oscillatory part in between is directly related to the coherence between them. The existence
of the oscillations associated with the negative quasi-probabilities values, is a signature of
the non-classical state. Such a state is very different from a statistical mixture involving the
same coherent field parts for which the Wigner distribution merely exhibits two separated
peaks without superimposed oscillations. In this case of even and odd coherent states the
two Gaussian peaks are well separated and compact. Note that the oscillatory part is very
much different from each other in two cases. The width of the Gaussian peak is associated
with the variance of the coherent field∼ √

(n̄). If we move over to a typical even (odd)
negative binomial state with̄n = 4 (w = 5, q2 = 0.4), the Wigner function still shows
two Gaussian-like peaks (figures 6(b) and 7(b)) and the oscillations in between these peaks.
However, the widths of the so-called Gaussian-like peaks are much broader as compared
to the coherent state case. This could be because the variance of the negative binomial
state(∼ n̄/(1 − q2)) is more (super-Poissonian) than the coherent state. The interference
between the two negative binomial states is modified considerably as compared with the
coherent state case because of the change in the statistics or photon number distribution of
these states. There is a reduction in the non-classical character of the even state because it is
becoming less negative in its quasi-probability distribution. Hence the coherence or quantum
interferences are sensitive to the statistics of the constituent states of the ‘Schrödinger cat’.
In other words the quasi-probability for the even (odd) negative binomial state is both
qualitatively, as well as quantitatively, different from the even (odd) coherent state.

Finally, we move to the other extreme of the negative binomial state known as the
quasi-thermal state (pure state) by setting parametersw = 0, q2 = 0.8, n̄ = 4. The
Wigner function for the even and odd quasi-thermal states are depicted in figures 6(c) and
7(c) respectively. Clearly the Gaussian-like peaks have undergone a considerable amount
of broadening such that we see only one prominent peak (positive in the even state and
negative in the odd state) in the Wigner function of these states along with a few oscillations
superimposed on them. Note that the non-classical character of the even quasi-thermal state
is reduced considerably in comparison with the odd quasi-thermal state. Thus as we move
from the coherent ‘Schrödinger cat’ to a quasi-thermal ‘Schrödinger cat’ we find a reduced
non-classical character in the even state and a reduced ‘coherence’ (i.e. less oscillatory
behaviour) in general for both the even and odd states.

The Wigner function (24) for the oblique negative binomial state(ψ = 0, φ = π/2)
is equally interesting. In the coherent limit (figure 8(a), w = 75, q2 = 0.05, n̄ = 4) we
observe three Gaussian-like peaks in the quasi-probability distribution. There are two small
but equal peaks (oblique peaks) symmetrically located opposite to each other. The third
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Figure 8. The complete Wigner functionW(X, Y ) (as defined by (24)) for the oblique negative
binomial state with all other parameters as in figure 6.

peak is bigger in height and is located at right angles to the line joining the small peaks.
In between the small and big peaks we observe oscillations which are manifestations of the
coherence between the oblique states. For a typically negative binomial state (figure 8(b),
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w = 5, q2 = 0.4, n̄ = 4) all the peaks become broader and the oscillations in between
them are reducing. Finally in the quasi-thermal limit (figure 8(c), w = 0, q2 = 0.8, n̄ = 4)
the third peak has overtaken the other two peaks in height as well as in width and the
oscillations are becoming less and less prominent. Clearly, here also (as in the even state)
the changes in the statistics from Poissonian to super-Poissonian in the component states
taking part in the ‘Schr̈odinger cat’-like superposition brings a reduction in the non-classical
character as well as coherence between them.

5. Possibilities of generating even (odd) negative binomial states and conclusions

We next show the possibility of generating even and odd negative binomial states of the
field. For that we first consider the production of an ordinary negative binomial state in
the process of parametric amplification by a proper choice of the initial conditions. We
considerSU(1, 1) coherent states for this purpose. These states are defined by [18]

|ζ 〉 = (1 − |ζ |2)k
∞∑
n=0

[
0(n+ 2k)

0(n+ 1)0(2k)

]1/2

ζ n|k, n+ k〉. (26)

|k, n + k〉 ≡ |n〉|n + k〉 represents a two-mode Fock state, i.e. eigenstate of the operator
â1â2, where â1 and â2 represent annihilation operators of the two different modes of the
electromagnetic field.

The diagonal elements of (26) have distributions given by

P(n) = (1 − |ζ |2)2k
∞∑
n=0

0(n+ 2k)

0(n+ 1)0(2k)
|ζ |2n (27)

which is the same as the negative binomial distribution withs = 2k − 1. TheSU(1, 1)
algebra can be realized in terms of two modesa and b of the field, i.e.K+ = a+b+,
K− = ab, K3 = 1

2(a
+a + b+b + 1) etc. So, in terms of the Fock states|n,m〉 of the

two-mode radiation field the parameterk equals(m− n) and (26) can be written as

|ζ 〉 = (1 − |ζ |2)(1+s)/2
∞∑
n=0

[
0(n+ s + 1)

0(n+ 1)0(s + 1)

]1/2

ζ n|n+ s, s〉 (28)

or

|ζ 〉 = exp[γ (a+b+ − ab)]
a+s
√
s!

|0, 0〉 ζ = tanh(γ ). (29)

So the state|ζ 〉 is essentially the negative binomial state of a two-mode radiation field in
which the probability of findingn signal photons obeys the negative binomial distribution.
The interaction Hamiltonian of parametric amplification is i(a+b+−ab) and it would produce
the state (29) provided the input to the amplifier is such that the difference between the
idler and signal photon iss.

The so-obtained negative binomial state can be used to produce the even and odd
negative binomial state by the method of Yurke and Stoler [13] employed for producing
superposition of coherent states. For this purpose, we have to allow our ordinary negative
binomial state field to propagate through an amplitude dispersive medium. Under suitable
conditions we can obtain a quantum superposition of two negative binomial states.

Another method of generating the even (odd) negative binomial state is by allowing
the ordinary negative binomial state to interact with a Kerr-like medium in one arm of the
Mech–Zehnder interferometer and a resonant two-level atom crossing one of the output ports
of the same interferometers. This methodology was reported recently for the possibilities of
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generating even and odd coherent states [19]. Since the negative binomial state represents a
coherent state under one of the limiting conditions of its parameters hence for certain values
of parameters one can adopt this method for generating the even (odd) negative binomial
states.

We have introduced even, odd and oblique negative binomial states and discussed some
of their statistical properties in this work. Since any negative binomial state interpolates
between a quasi-thermal (pure) state and a coherent state so the results obtained here may
be useful in carrying out a systematic study of statistical properties as one moves from even
(odd, oblique) quasi-thermal state to an even (odd, oblique) coherent state.
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